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Let m = &nlogn+énloglogn+cnn. Let T denote the set of graphs with

We show that if a

random graph G is chosen uniformly from r then

,/

ya 0 if ¢

n+= matching) = o=t /8 if c,

\~\\\g,} . n

We- also showwphat if a random graph G

e )
sufficiently slowly

22) ww,

z=2) +@

with vertices {1,2,...,n} is

constructed by randomly adding edges one at a time then, almost surely, as

soon as G has degree k, G has |[k/2] disjoint hamiltonian cycles plus a

disjoint perfect matching if k is odd, where k is a fixed positive integer.
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Lat Gn,m denote a random graph with vertices {1,2....n} and m edges where

O\
each of the ( : possivle graphs is equally likely to ve chosen.

Erdos and Renyi [5] showed that if m-tznlogmcnn then

0 if ¢ ==> -=
-2¢ -

(1.1) 52 Pr(u(Gn’m) = |n/2]) = o® if ¢, ==> ¢
1 if ch =) +o

where u(G) denotes the maximum cardinality of a matching in a graph G.
The probabilities in (1.1) are the limiting probabilities for
G(Gn m)2_1 where 8(G) denotes the minimum vertex degree of a graph G. Taus
?

Erdos and Renyi proved (1.1) by showing

(1.2) 1im pr(u(cﬁ’z) = |n/2}) = 1.
nee '
Wnere 61(1121 denotes a random graph chosen uniformly from the aet of graphs
?

with vertices {1,2,...,n}, m edges and minimum degree 1.

The first result of this paper is to tighten (1.2) and prove

Theorem 1.1

Let m = %nlogm%nlbglogn*cnn, then

0 if ¢y =a) .e,gufficiently slowly

i

1 Pr(u(e{!)) = |n/2]) =) e arc e e
nee '

1 ifcn-> ‘e




...........................

There is at present, an unfortunate restriction Icn|'°(1°glosn) for
¢y a=s) -@, We cannot at present relax this because of the difficulty of
dealing with the conditioning of &(G, ;) > 1. FNote that some restriction
must be placed on the growth rate of lcnl when c, =) -=» a8

pe(u(e '}, p7) = L) = 1
Our second result is a generalization of one stated oy Komlds and
Szemerddi [13]. To state this we need to define the following: a grapa
process En = (Gys Gyy eeeey Gpo «e+) ia a Markov process in which G, ia a
graph with vertices V_ = [1, 2, ..., n} and edges E  where IEjl = m. G

is obtained from Gm—1 by chooaing ecv(z)-E

2 p-y UWpiformly at rendom and

putting Em - Em_1U{e}. Note that Gm apove is distributed exactly as Gn,m'
For a graph property I (usually monotone) and grapa process G, let

t(r,1) = min(m : Gmen).

In particular let
L ® 'The minimum degree of G is at least k'
and

‘l’lk = ' G has |k/2] disjoint hamiltonian cycles plus a disjoint S
matching if k is odd . |

Our second result is ‘
Theorem 1.2 If k is a fixed poaitive integer then
1ia Pr(<(r,m) = r(lj.ik)) - 1. : 1
| - ]
Komlds and Szemerddi stated this result for k = 2. FNote that Theorem

1.2 18 most clearly stated as: if wve randomly add edges one Dy ome then IR

when the graph constructed has minimum degree k then 1t a.s. nas lk/2] ;_:.':~..-1

disjoint hamiltonian cycles plus a disjoint matching if k is odd.
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For other results on matchings and hamiltonian c¢ycles in random

hd
7

'- graphs see DBollovas [2], Bollobvas, Fenner and Frieze [4], Fenner and

Frieze [7] [8], Frieze [10] [11] [12], Ricimond, Robinson and Wormald
[14], Richmond and Wormald [15], Robinson and Wormald [16], Shamir [17], S

and Shamir and Upfal [18] [19].

Notation

For a graph G we let V(G) demote its set of vertices and E(G) denote its

i set of edges. "'“-‘“:

: For veV(G), dG(v) is the degree of v, and for S € V(G), NG(S) = {v%S:
there exists weS such that {v,wje E(G)}. . :

For non-negative x, Vx(G) = {veV(G):dG(v)Zx}. For s € v(a), 6[s] = :

(S,Eg) where Eg = {ecE(G):e € s}. %

Let D, = D1(G) be the set of vertices of degree 1 in G and let ¥(G) =

c[\r2 (6)-Ng(D,)]."

- 4

For ecE(G) we let G-e = (V(G), E(G) - {e}) and for ef E(G) we let G+e e

= (v(G), E(G) f{el). :
S

<
ForO0 {p <, Gn,p

in which each of the (;) possible edges is chosen with probvability p and

denotes a random grapn with vertices {1,2,...,n}

not choasen with provability 1-p.

e e e e e e e g e e e e e Lt T e e e N e i e e W
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Throughout this section m = nlogn/4 + nloglogn/2 + c_n vhere for the ::"L:f:f:

RS

RN n

N ]

[Z: mament we assume Ocnlw-. The proof of Theorem 1.1. is obtained by a ';'-:

= 5

. sequence of lemmas. =

Lemma 2.1

B Let G =G, ;o LARGE =V, /100(G) and SMALL = V(G)-LARGE. L
Consider the following conditions: s
(2. 1a) No cyele of length 3 contains 2 small vertices;

- Saiad

; (2.1b) No path of length 2 contains 3 small vertices; .

(2. 1¢) S ESVG), 4 < IS1 < 7, IS ASMALL| > 3 implies GI[S] is not
connected;
(2.14)  ISMALL) < n°>%; -

(2.1¢) 4 4 S GLARGE, (S| £ n/logn implies |NG(S)| 2 (logn/1000) (S |;

(2. 1f) No vertex has degree exceeding Slogn. ':“-'.;-‘Z:

Then for n large ';f'_:f_‘j"
(2.2)  Pr(G, . fails to satisfy (2.1)) ¢ n %
R

Proof (Outline) ]

To estimate the probabilities for (2.1a), (2.1b), (2.1c), (2.1f) we
simply compute the expected number of triangles containing 2 small f‘:.'_f‘.-l?l
vertices etec.. This is tedious but straightforward.

I;: To deal with (2.1d), (2.1e) we let p = (logn/2 + loglogn + ch)/n and
consider the randam graph Gh'p.

As IE(Gn'p)l is a binomial randam variable with parameters (g) and p

it is easy to verify that

2.3) PrCIEG, I = m > 1/2(rxlo:>¢n)1/2 for n large.
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Al so
(2.4) G conditional on JE(G. )| = m is distributed exactly as
n,p n,p
G .
n ,m
Thus for any property I
1/2
(2.5) Pr(Gn ” has M) < 2(nlogn) Pr‘(G“’p has 0)

We show next that

055
(2.6) Pr(Gn p violates (2.1d)) = 0(n~%" ) for sane ¢ > O
and
(2.7) Pr(Gn b violates (2.1e)) = 0(n.26).
’

Lemma 2.1 is completed using (2.5), (2.6) and (2.7).

-

Proof of (2.6)

Pr(Gn p violates (2.1d)) < Pr(there exists S, s = [S| = rn'ssl and each
1]

v € Sis adjacent to fewer than logn/100 vertices in V(G)-S)

logn/100
(:) (<§—- (n;s)pk“_p)n-s-k)s - O(n"es).

k=0

[N

Proof of (2.7)

We first consider the case 1 < IS]| ¢ n/(logn)3 and note that if (2.17e)
fails then, where s = |S|, G{S UNG(S)] has at most (logn/1000 + 1)s
vertices and at least (logn/200)s edges. The probability of this

happening is, for large n, no more than

n/(1c>gm)2 (;)

L e—
d
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For s> n/(logn)3 we need not restrict S € LARGE and then the probability

that (2. 1e) fails is no more than

n/logn (logn/1000)s
n n-S s. k s(n=s=k)
z (s) Z: (k ) (1 =« (1=p))” (1=p) .

s=n/(logn)3 k=0

3
- o(n-en/(logn) y.

a
Let 90= Socm denote the set of graphs with vertices {1,2,...n} and m
edges. Let G1= 51(n) denote the set of graphs in So that satisfy (2.1).
We prove the following lemma on the neighborhoods of sets of vertices:
Lemma 2.2
Let G ¢ 91 and XCE(G) be a matching of G that does not meet any small
vertex. Let Hzv((V(G), E(G)=X)). Then for n large we have
(2.8) g« SCV(H), IS| < n/8000 implies INH(S)IZISI..
Proof
Let T = N;(D,) and let S, = S/VSMALL and S, = S-S;. We note first that
(2.1) implies that no large vertex is adjacent to 3 small vertices and no
large vertex is adjacent to 3 members of T. Hence
(2.9) NG D IN BT = 18,1 + NS - 3|32I - min(1S,(,215,1)
where the factor 3 in (2.9) accounts also for the deletion of X.
We must now prove that
(2.10) INg S 2 18,1,
Note next that (2.1b) .mpues H[s1] consists of isolated vertices and
edges. So let {u,v} be any edge of l-l[':’»1 J. Then (2.1¢) implies

(2.112) neither u nor v have a neighbor in common with any other vertex

[
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8 e
(2.11b) neither u nor v have a neighbor in T. \
Al so (2.1a) implies that; .
(2.11¢) u and v have no ccmmon neighbor. :
Now consider the components of the graph induced by the isolated r_
vertices I of H[S1] and their neighbors in G. 'Let C be the set of ) 4
vertices of such a component. y
(2.11d) ICAI| = 1 implies, by (2.1c), that ICATI <1, ]
To deal with the case |C NI] > 2 we note that if u,v € I then by (2.1¢) .
::} (2.11e) IN;({ub NTE <1 ]
: (2. 116) Ng({ul) ANIvD) # O implies Ny({u})NT=q. S
) Using (2.11) plus the fact that S,CV,(G) ylelds (2.10). We now use
this in (2.9). \
Case 1: IS1I > 2l32| . _____
- Fram (2.9) and (2.10) and (2.1d) and (2.7e) we obtain S
; INGGSIT 2 1S, 1=1S51 + ((1ogn/1000) = 5)1S,)
= IS| + ((10gn/1000) = T)IS,l. S
Case 22 IS,| <2IS,| < 2n/logn 4
From (2.1), (2.9) and (2.10) we Have
j INSGS)I > 15,1 = IS51 + ((10gn/1000) = 3)1S,1 = 15,1 ‘:
.; = 1S| + ((1ogn/1000) = 5)IS,! = IS, 1). 3
;f Case 3: 1S;1 < 2IS,1, n/lcgn < IS,1 < n/8000
_ Choose S,CS, such that 1S;| = n/logn, then [N, (S )1 > IN,(S)1-IS,1 X ;
< > Tn/8000 using (2. 1e).
: Then from (2.10) and (2.11) we obtain ‘ J
2 4 (831 > 18,1 = IS,1 + Tn/8000 = 31S,1 = IS, | ]
_3}': > 181 + (Tn/8000-71S,1). | \
We deduce from these 3 cases that the conclusion of the Lemma holds. \i
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Next letﬂ be the set of graphs which contain 2 vertices of degree 1,

_—
with a common neighbor., Clearly no graph belonging toﬁ has a perfect or N .:j
near perfect matching. Our aim is to show that the main obstruction to a 4

graph of minimum degree at least one having a perfect or near perfect 1

matching is that the graph belongs ton.

Lemma 2.3

Suppose G ¢ 92 = {G ¢ 91\H 2 w(G) < IV,(G)1/2]} and we remove a set of
edges X as in the statement of Lemma 2.2 to obtain a graph G1. let be

the set of maximum cardinality matchings of G1 which cover every vertex of

degree 1, let Z be the set of vertices which are left uncovered by at
least one member M ofm. i.e. not incident with any edge of M. For v ¢ Z o
let Z(v) be the set of vertices w for which there exists M e msuch that
both v and w are uncovered by M. Then

(2.12a) if w € Z (v) then w is not adjacent to v. -

(2.12b) 1Z} > n/8000 and 1Z(v)} > n/8000 for v € Z,

Proof

ﬁ If (2.12a) is false, then we have the contradiction that {v,w} can be
E added to any M em leaving v and w uncovered.

E To prove (2.12b) we note that Z(v)_C_Z and so it suffices to prove
L {Z(v)} > n/8000 for v ¢ Z. Note first that H = (G,) satisfies &(H) 2 1

and that as G ¢ T we have [V(H)] - 2u(H) = IV (G -2u(G)) > 2.
& let v ¢ Z and M ¢ TVl leave v uncovered and let S£¢ be the other
F vertices left uncovered by M, If M' = M E(H) then {v}\J SCV(H) and M'

Ej.- is a maximum cardinality matching of H. Let S»1 be the set of vertices

reachable from S by an even length alternating path with respect to M',

..............................
...............................................
.....................................
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.....

S &S, here. Then V) €S, (= S5, actuslly) and we prove the lemma by

C Ve o e

showing .
and applying Lemma 2.2. _ ’
l If x ¢ N.(S,) then x £ S and so there exists y, such that {x,y4} ¢ .
’ M'. We show y, ¢ S, which will prove (2.13). Mow there exists y, ¢ S, '

such that {x,yz} ¢ E(H). Llet P be an even length alternating path from .

G some S ¢ S terminating at y2. If P contains {x.y1} we can truncate it to ;

= terminate with {x.y1}, otherwise we can extend it using edges {yz.x} and

: {x DY1} . .
. o -
’ A

We can now prove that, excluding isolated vertices, if Gn 0 tﬂ then

it a.s. has a perfect or near perfect matching. We use a colouring.

argument introduced by Fenner and Frieze [7]. -
Lemma 2.4 R

For n large
(2.18)  Pr(u(G, o) < LIVy(Gy /2] ¢ Gy o £R) <073

Proof

6

Let a=64x10° and w={alognl. We show that for n large

219 18,0716, ¢ 201-a”)
which in conjunction with Lemma 2.1 proves (2.12).

For each G ¢ Qo consider the (2) ways of coloring w edges green and
m-y edges blue. For a given coloring we let Gb denote the subgraph '.'-i::.‘
L spanned by all vertices of G and the blue edges only. Ilst A denote the

- nunber of blue-green colorings which satisfy

- (2.160)  u(E) = w(® < LIV,(&1/2)

(2.16b)  (2.12b) holds for H = ¥(G*).

...........................................

............
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We show that ____:
(2.172) a3 1§,1() (1 = e(a))* :

where €(n) = 0((lcgn)>/n) and that

(2,170 8 ¢ 1 G 1B r-a"" 5]
which will imply (2.15). |

Proor of (2.17a)

If Ge 82. let Mbe a fixed maximum cardinality matching of G. MNow there -]

.are (1 = e(n))"'(:) ways of choosing o green edges X such that (1)XNM=9, :.__:fij

(ii) X does not meet any small vertices and (iii) X is itself a matching 4

(this is the only place that we need (2.1f)). For such colorings (2.16) .3

must hold, which proves (2.17a), R

Proof of (2.17b)

Consider a fixed blue subgraph Gb and count the number of ways 3=a(Gb) of ""':'

adding o green edges so that (2.16) holds. If (2.16b) does not hold then

8=0. If (2.16b) holds then in order for (2.16a) to hold we must avoid 1

adding an edge {v,w} where w ¢ Z(v) as in Lemma 2.3. But there are at most :‘"j

(1 -a")“((;);M) ways of doing this and (2.17b) follows. Rt

. g . :.j_;

To study the behavior of G(:xzm we use the following: o]

Lemma 2.5

Let H be the graph obtained from Gn,m by deleting isolated vertices Ef?'.‘i'

and re-labelling the remaining vertices i, « 12 <eee¢ijas 1, 2, ouey b —‘

respectively. Then for a fixed value of h, His distributed as G(gzm.

=3

Each such H is obtained from the same number of Gy e 3

] ]

................
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A The following Lemma will enable us to pass, via Lemma 2.5, from ___
LA
= results concerning GIV,(G )] to results concerning AR =
'_- n’m l'hll ~_-.‘
X Lemma 2.6
Let t = fe2° n”zllogn'l, then for large n N
(2.18)  Pr(N,G_, )l =mn)>n 3
¢ 1 net,m - -
Proof - -
‘ Let p = (logn/2 + loglogn + 2cn)/n. We show first that for n large -
i (2.19) I, = Pr(IV,(G. )| = n) > (logn)'”3 n™23, -
N 1 1 " n,p -
_ Now Iy = ("t*)Pr(AJPr(BIA) where -
- A = 'vertices n+1, ..., net are all isolated,’
and. Ll
B = 'Ve\"f-ices 1' 2. eeey n are 811 nOl‘l-iSOlated.' ——
- For n large j:';fi:i:'
. (t)+tn t ,..,_
Pr(a) = (1-p)°2 > (t/n) " (1=0(1)) .
and
Pr(BiA) = Pr(8(G, ) > 1) 2 Pr(d, (1) 2 D", =
N, = - - -
n,p .
The latter inequality is a consequence of
: Pr(d, (kel) 211 dy (1) 21, 121, 2, weuy k) 2 Pridy  (kel) 2 1)
n,p n.p n.p
vhich follows from the FKG inequality [91.
e N L N T Py e T o e T > .:::\'::.;::.;-:.;.:\‘:.'_::.;.:‘; ::‘.E:,_
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Pr(BIA) > (1=0-p™ 7> (1et/m)® (1=ol1)). =
Tus, 1, > (%9 (m®0-t/m” (1-0(1)) and (2.19) follows on using
Stirlings inequalities.

Al though (2.19) does not give (2.18) directly it does show '
(2.20) there exists m,, |m-a | > 2n'/210gn such that

POV Gy g 31 2 W (1ogm)' a1 7%, -
This is because Pr(llE(Gmt.p)l-ml > 2n”2103n) £ 1/n, which follows from
the Chernoff bourd.

To obtain (2.18) from (2.20) we define
Gm') = (GVG) = (1,2,...,met}, IV, @)1 = n and IEG)| = o'}, where we =
assume throughout that |m'-m| < ?.nvzlogn. "

For Ge §(m') let a(G) = I{ecE(G): G-e ¢ g(m'-1)}|.
We note __,
(2.21) o' > a(G) > w'-{D,G)I. I
Al so ;_:-_:-
(2.22) 2 a(e) = (-ar+1) 1§ (- | | |

Ge §(ar) -
as both sides of (2.22) count the number of pairs (G,e) where G¢ S(m'-n,
e£E(G) and Gee ¢ § (m').

Now (2.21) implies N

(223)  w'i§a)l 2 — o > (m'=n, (') ) G(at) :
Ge §(n')

where 0, (m') is the expected number of vertices of degree 1 in a randam B

graph chosen uniformly from g(m').

..............
...............
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Next let
: (n-o-t))
Ty = PrOiVy Gy o)t = m) = 1GCaL/ 2

It follows from (2.22) and (2.23) that
2.24) oy, /m' <M, /Ry o < o, /(m=n, (m'))

where

bge = B ((D)=mt+1)/(("3H)-mre1),

In order to apply (2.24) to "close the gap" between m and m, in
(2.20) we must estimate 51(m').

We show first that if a(c) = (e 2/2)(1+0(1)) then, where p =
(logn/2 + loglegn + Ze;‘)/n, e;l +c,

122
3> 8n' 2 < (8/ae))™"

1]

(2.25) Pr(IDy G, . »

The above probability is no more than the probability that there
exists s = I'ea(c)n”zl vertices, each of which is adjacent to at most one
of the other n-s vertices,

This latter probability is

172
¢ M-P™ + @) p(1-p™*H® ¢ (8/a(en™

which implies (2.25).
We next prove the very crude lower bound

172
(.26  Pr(IV,(G - for n large.

n+t.m'” 2 n)>e

- PP ISR ARSI S St SarC S St el . -. ‘. -
RO RIS NIRRT S
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To do this, we proceed as in the proof of (2.19), using C'n+t.m' in
Place of G, _, and define events A and B. Mow Pr(A) (t/m%1-0(1)) as —
[ - 1
before but we cannot use the FKG inequality to bound Pr(BiA) which is f-_'-:j;
A
Pr(s(G )2 M. 5
Instead, let now p = logn/2n and then
'
(2.27) Pr(s(Gn'p) >N« Pr(c(Gn'm,) 2 1) + Pr( IE(Gn'p)l >m'). L
We then use the FKG inequality as before to get a lower bound o
_n1 /2 . 1
Pr(s (G, p) >1) > (=o(1)) e for n large. ..
[3 <o
The Chernoff bound gives
2 ol
PrOEG, )1 > ) ¢ e m(ioBlogm) /ileen e
P - -
for n large. Using thes$e inequalities in (2.27) gives oy
.n1/2 Lt
Pr(s(G_. ,) > 1) > e /4 for n large. )
n,m - -
This is easily good enough to prove (2.26). Now (2.5), (2.25) and
(2.26) together imply T
(2.27)  Pr(ID, (G M >en'? iy, G )12n) -
. 1 et '’ = "1 et .
172 172
< 2(nlogm ' 2 (8/a(e))7B" .
N S S e e e S A A
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Putting 8 = max(2,a(c)e) in (2.27) we easily obtain

/2

(2.28) 51(m') < 26n’ for n large.

Using (2.28) in (2.24) we see that for large n
(2.29)  1n,,/8,,_, - 11 < 0/n"/210gn
where 6 depends only on c.

(2.20) and (2.29) together imply the Lemma. o
For the remainder of this section t is as in Lemma 2.6 Now let

? 1
X = “(Gn+t.m) = Uv‘l(cmt.m“/z-' i
] ?
e IV )t =0
? 1 ]
Z = GI'H»t,m eﬂ *

Now Lemma 2.5 implies

Pr(u(G 1)) = Lw2)) = prexiv.
Now
Pr(XIT) = Pr(X NZIT) » PrXAZID)

(Pr(XNYNZ) + Pr(YNZ) = Pr(ENYND)/Pr(Y)

However, it follows from Lemma 2.4 (with n+t in place of n) and Lemma 2.6
that

.......................................

-7 . . LI S A A A A" S L R

AT aYe T .=
DS

--------------
.......
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Prl AY AT /Ar(Y) <PrXAD/Ar(Y) < n™ ),

Similarly

Pr(XAYNZ) /Pr(Y) < Pr((2.16) /Pr(Y) < o~

and 0 we have

(1
(2230)  lim Pr(uGp

nee

) = Lnz2)J)

- ] -
= iﬂ Pr(G, . ’mm. IV Gy o)l = M
Lemma 2.7
-l
- /8
ti: Pr(Gm_t’me'H{ My Gy p)l = 1) = 1-e
Proof

Note that although it is very easy to prove that

<le

2 cR) = 1-e7 /8

lim Pr(Gm_t'

Neo

the conditional result seems to require more work. We shall in fact first
prove the equivalent result for the random multigraph HGn-o-t.m defined
as follows: Let X = {1,2,...n+t} and let X € xz"' be chosen at random so

that each of the (mt)zm vectors is equally likely to be chosen. Let MG(x)

be the multigraph with edges {321_1. xzi} for 121,2,...,m. We use "Gn+t.n
to denote a random MG( 5) chosen is above. Furthermore, the random graph

ch-vt,m is obtained by taking "Gn+t,m' deleting loops and replacing




:
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b‘.
L‘
E
We note first that
Exp (number of isolated loops in MG ) = o(n-1/2)
n+t,m
and hence
[
- a(~1/2 R
(2.31) pe(lv,(mc ., )1 # IV (Re ,, )1 = 0™ /9). -
L
Also ". 1
(2.32a) Pr(MG,, = has more than 2 logn loops) = o(n~1/3), R
y ]
- g
(the number of loops in MG is a bpinomial random variable ]

n+t,m

with parameters m and 2/(n-1)).

=

(2.320) PI‘(MGmt p bas more than (lc’gn)2 edge repetitions) = 0(n'1/2) ]

’ K

..i

B

(the number of edge repetitions in MG ,, pis dominated Y
y o

probabilistically oy a binomial random varisole with para- )

meters m and m/ (n;1 ). *fl

RSN

and so Bt

(2.33) Pr(lE(RG_.. )| < m-2(logn)?) = o(xa~1/2).

n+t,nm

..............................
...........

..... ~
.............................. -, .
o
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' We note that

:':-'.: ! - ' i i i

2 (2.38) if m' = [E(RG , )| then, for fixed m', RG , . is distributed
as Gno-t,m' .

n We now estimate

PrOIV (ARG, )1 = ) =§'_Pr(w,<sm )l = W PrOE®RG,, )=t

C ey

by (2.34)

for n large, by (2.33) and Lemma 2.6.

It follows from (2.31) that

«25
- (2.35) pPr( W1(M6n+t,m” =2 n) >1/3n for large n.
_: Now it 1is easy to show that Pr(there exists vertex adjacent to 3
R -1/2 -..:
vertices of degree 1 in Mc'm-t ,m) 2 0(n ). o
Thus if we define Q' = n"there exists a vertex with precisely 2 j;';'t'\i'i
' neighbors of degree 1" then » o
i (2.36)  la Pr(MG,, e R i IV (MG, )1 = m) =
’
[} -
lim pr(ncmmc"ﬂ MG -RSTIER P i
o We now write

/
(2.37)  Pr(MG,,, <RI IV (MG, 1 2 m)




;
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| ’
1
:dzm protG, o oRiMG, e TRG(@)PrOMG e TG () .
| o
o where
: +t . -~M.
d 2z {deZ") 0 < dp¢ g eee & dp e
net
£ d,= 2m and {id, > 1} = n},
- i i&
X i=1 -
and mg (d) is the set of multigraphs with vertices {1,2,...,n+t}, m edges
i and degree sequence g.

Let now

(2.38) 9, = {dea: (a)|l{izd,=1}] -e~on'"? AL

o 2l < e

) (b)1{i:1d;-2m/'nl > 2m/nloglogn}i < 2n/loglogn,

(e) d ., ¢ Slogni

. )

2 We show that

.'—. -

: (2.390) lm (£ Pr(MG. cTNG@)/ z Pr(MG, . e TG(A) =1 .
. New dcno deg :
3 )
N D SRR e e e T e e e e e L e e e
TPV S ST K R S T T N s e AT SR AT Sr e e S S S R A ST A S S R SR




i_ 21
2.39b) 1im Pr(MG MG (@) s 1= B or g
. (2.39b Z'I.":x ( net m€ N mt’mcmg 4)) = 1-e or deg .
. We can then deduce, using (2.36) and (2.37), that
| e
2 oy o - /8
v (2,80 1im PreuG o cRIV, 0G ) 1=0) = e .
nees )
Proof of (2.39a)
In view of (2.35) we need only show that the probability that MGm-t,m

) -1/4

fails to satisfy any of the conditions in (2.38) is o(n ).

(i) (2.38¢)

Here we simply verify that the expected number of vertices of degree

exceeding 5 logn is o(n™25), "]

(11) (2.38a) :

Here we simply verify that if D1 is the set of vertices of degree 1

. EERCACCA
L u'.:‘ PP

. 4
24

in Mc'n-ot,m then

l"'
l'} -

IR
<
et

ol

. Exp(ID,1) = Var(ID,1) = n'2e%r2

e alal s A

. and then use the Chebycheff inequality.
s (1i1)  (2.38b)
Let ¢ = 1/loglogn and a = [2(1+c)m/n1. Now one can. easily see, by ’

D]
Ve e K "-
A

P
.

conditioning on vertex degrees, that for 1 < k < n/loglogn and G = MGmt o

"‘
A
PR
P APAP LA ST W)

) Pridg(ke1) > 8} do(1) > a, 1 <4 ¢K)

< Prid(ke1) > 8l d(1) =2, 1 <4 <K

o
et
e’s .

!
P I
. ,' . a .
2t R ]
TP SRR, e
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3 . Z(Zm;ka)(1/(m_t_k))r(1_1/<mt_k))2m-ka-r ¢ em(amka)Ze/3(net=ic ]
4 r28 T
: S
-. R
N -e2logn/13 LS
B ¢ e”¢ 198 for n large. |

Thus Pr(there exist more than s=z=n/loglognh vertices of degree

exceeding a) ]
. 3
5 net, -c2slogn/13 -t ]
< s ) e 0(n ) for any t > 0.
—~ -
» A similar argument deals with vertices of degree less than 2(1-¢)m/n. -
Proof of (2.39b) L
l;ﬁ;f To prove (2.39b) we need to be able to generate a random Gc’mg (d) T
= o - I
i with probability ' T
X PrMG,,, =6)/Pr(iG, <TG (2)) T
:-:‘ .‘_'.
I (note that this is not the same for all Gemg(d)). N

' - - . d
e We modify the method of Bollobas [1]. Thus, let deR be fixed and let S
- - )
::j: “1' wzp seey "n+t be diSJOint sets “ith |Wi| H di fOl‘ 131’2|ooo'n+to ut ";
b' mt R
- W=\ Wi and let the members of W be denoted as points. A configuration T
- i1=1 ]
F is a partition of W into m pairs of points called the edges of F. let g :~j.-'.1‘;i'
>--__ . . ]
!: be the set of possible configurations and note that |Z| = N(m) = -j
L. AN
:.1:' (zm)/msz"'. For pcwi let ¢(p) =1, for L = 1,2,...n¢t and for Feg let :'_.:1_.:
.-_., )
- #(F) be the multigraph ({1,2,...,net}, {{o(p),0(Q)}:{p,qlcF}). DNote that T
._!'. o(z) :mg (d). T
E’.:: We turn  into a probability space by giving each Fe¢g the same
> o
'L probability. This induces the required probability space on ¢(z). (Think RS
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of generating MGn-o-t m conditional on MGrH-t.m emg(g) by taking di copies

g

of integer i for i = 1,2,...,n+t and then randomly permuting these 2m
integers and picking up edges from this sequence as usual. Note that this
is essentially how ¢(F) is generated -~ the k'th copy of integer i
corresponds to the k'th element of wi).

To prove (2.39b) we define a random varjiable

X(i,5,k) = 1 if, i < j, dG(i) = dG(J) = 1 and {i,k}, {j,k} €E(G) and no
other vertex of degree 1 is adjacent to k in G where G = ]
oF.

= 0 otherwise,

We shall use inclusion-exclusion to show that
lic
(2.41)  1im Pr(2__ X (1,5,k) >0) = 1-e~¢ /8 .

New 1,J ’k -
which proves (2.39b). {

Let N, = {1, 2, ..., n+t}3 and for S N

3 3 S '“T
(i,3,k) eS). The definition of X(i,j,k) implies

let I, = Pr(X(i,j,k) = 1 for

(2.42) Ig = 0 unless S is of the form {(11.:]1,1(1), cees (if.’Jk'kt)}

where 11, eeay it’ J1, cend Jt’ k1. ceey kt are all different.

Let Py =: I
SGN

SNy

ISt =¢t

s* 1

A "

(2.41) will follow from the Bonferroni Inequalities (e.g. Feller [6]) if

we show that for fixed r

(2.43)  1lmp_ = (e /8y /r1

Nea

o Let s = [{1:d, 21}|, D, = { 1:d, > 2} then, in view of (2.42) we have

B .
. et
0 Ce e e el
I LU Y W P}
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-8 4,(2.-1)) N(m-2r)/N(m) -
o7 Gean) 12t R%é e bt e
IR| = r ?;é

Using de@ and r fixed gives (2.43) witmout difficulty, and so (2.40) is o

proved.

N6éw simple estimations, using expectations, show

IRC AR ) MG RS - AR

1
Pr (there exists v such that d (v) >1 =24 (v)) = 0(logn/n /2)
MG RG
n+t,m n+t,m
and hence
| . 1/2
Pe(ue,,, o ¢ and Re ,, Q) = 0(loga/n'/®) —

and so (2.31), (2.35) and (2.40) give

-4c
i ! = FER - /8
ii: Pr(RGn+t,me6i.|V1(RGn+t,m)| n) = 1-e

Taus, waerse

= ! = ' =
oge = Pr(RG_, o AIIE®RE o) == IV (RG] = =)

we have .

=o'V

(2.44) 11m ¥ o Pr(IE(RC
nee '

n+t,m




w L oy T g o= i A el = = - S e i e > g
M St A AL A M A E S Sl S A AT SV AL AL e i e s S e pd e N R Pt Rl RERREAE A

25

Now in view of (2.34) we can write

(2.45) oy, = PrG . eIV G 1)) =)

net ,m

We can deduce ow lemma from (2.33), (2.35), (2.44), (2.45) and
(2.86) log,/0p, 4 =11 = 0n™'"2) or m >m' > m-2(1ogn)2, ':‘:
To prove (2,46) let <

gA(m') = S(m' )nﬁ where S(m') is as defined in Lemma 2.6.

row
a L

For Ge 9,(n') let a(@) = MeeE@):G-ec Gy(n'-1)}1 > m'~1-1D, @)1

and for Ge SA(m'-ﬂ let
b(G) = ekE(G):Gree Sptn )M > () - w' + 1 - nID, @)1, e
Arguing as for (2.22) we have ::

2 @ D SRS 3
Gcs (m') Gcg (m'=1) B

A A o

k....ﬁ

and s0 argui:;g as for (2.23) we obtain

(2.47) ((D)=m'+1=nfl (m'=1))/m <1 G, (w171 Gy(@'=1) 10D =0"+1)/(m' =8, (m! ))
where 51(m') denotes the expected number of vertices of degree 1 in a -
random graph chosen uniformly from gA(II' ). ‘

/2

We deduce from (2.27) that fi,(w') ¢ 2en'/° uhere 5 is as in (2.28). S

Mow o y21 G,(a)1/1 G(u')) and 5o (2.86) now follows from (2.22), (2.23),

. (2028) and (2.“7). :-:.::-;
#_ The resder familisr with (1] will realize that we had to work with —
521}:' multigraphs and proceed in this way because the probability that a graph \
& in o(d) has no loops or multiple edges 1is too small. *




PR A R S0 A It S A e o i S = e o) A A S e e et A e S e SRR RACR AL A A Jre S S A
- T T T

e o
.

26

Proof of Theorem 1.1

The case ch 22> ¢ follows immediately from Lemma 2.5, Lemma 2.7 and

(2.30).

For e, 2s> +%, cn € logn we simply repeat the arguments almost
unchanged. For c, > logn we have no conditioning problems as G(Gn'm)zj
a.s. in this case,

For c, =2) =a, =, © o{loglogn) we can again repeat the argument for
¢y 2=> ¢ without much change.

Ir ¢, ==> == rather fast then we are unable to prove Lemma 2.6. The

reader will observe that we only just managed to close the gap in (2,24).
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3 At
We now turn to the .proot‘ of Theorem 1,2, We first define a random .
edge colcred graph G(n,m,k) as follows:
Start with Gn o and all its edges painted blue;
- shile 6(G) < k %0
: begin
choose a vertex v with degree < k, uniformly at random;
let X = {ecV?) _E(G): veels |
choose ecX uniformly at random and paint it red;

EG): =E@GI{e}

.

end -
The following Lemma is taken from Bollobas [3] and is given here for _.-'7
completeness, . :-
Lemma 3.1
Let T be a monotone graph property such that Gen implies &(G) > k.
Let m:%nlogn . %(kﬂ )nloglogn = nw where wzw(n) +» and w(n) < logloglogn. e
Then .
o G(n,m,k)el a.s. » «(r,M = (r,0) a.s, T
S Proct .
Consider an instance of E. Colour edges LETL PYRTRL blue, For i > m
3 paint e, red if e, is incident with a vertex of degree { k-1in G, _,. Let R
m'sr(r.nk). The blue-red subgraph of G, 1s distributed exactly as
- G(n,m,k) and %o G eI a.s. as 01 is monotone., Furthermore G , % I as

LRl Y
-

NOROTRESEY

A R RN O
Aadeadeas's So 2t gt et a2 et
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In view of this we can prove Theorem 1.2 if we can prove that

G(n,m,k) eI, a.s, wherem is as defined in Lemma 3.1. We shall use this

k
value for m throughout this section.

We state the following Lemma which can easily be verified.

& Lemma 3.2
. Let G, , and let SMALL={veV,:dg(v)<logn/10} and LARGE = V,-SMALL. | .
% The following properties hold a.s. oo
| (3. 1a) 8(G) = k=13 i
' (3.1b) I(v:Vn: dg(v) = k=1}{ < logn; :
[ 122 o
F (3.1¢)  ISMALL} < n'/S; e
. (3. 1d) no pair of small vertices are adjacent or share a common "': :
- neighbor ; ‘
E (3. 1e) g # SSLARGE, (S| < n/logn implies ING(S)l 2 ISt logn/10Q0; "'-"
3 (3.1)  dg(v) < Slogn for veV . a
From this we easily derive
Lemma 3.3 :“"
Let G = G(n,a,k) and let SMALL, LARGE be as in Lemma 3.2. The G has
the following properties a.s. ‘
(3.2) If {v,w} is a red edge then dG(v) = k and welARGE, assuming _
dG(v) £ dG(w):
Llet X be a matching of G that is only incident with large vertices and let
H = G=X. _v
Then there exist real constants a,, 8, > 0 such
(3.30) G £SEV, IS| < apn implies N, (S)I > kISI; =
(3.3b) ISt > an implies | {v,w}¢E(G):veS,weS}H| > sknlogn. ;—_~

......
------------------------------

ST A L R TR - . NG :
DR RITR T P S . ., " e ¥t e, . ) - PRI IR YA S T T I R e L A P N
| SRR S SO e T e A e e e e L S PRI AL AL A
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e

(3.2) ‘follows from (3.1b) and (3.1¢). (3.3a) is proved in a similar way

Proof

to Lemma 2.2, and we can take Bk = a (1_ak) /2 in (3.2b). :Z};’_.j.::
a e

For non-negative integer h, if graph G contains h disjoint

: h
hamiltonian cycles H1,H2,....Hh let G-\ Hi be called an h-subgraph of G.
i=1
. Let 9(G) = (h,p) where

h = maximum number of disjoint hamiltonian cycles in G;

0 if k=2n
» P = max imum cardinality of a matching if k = 2h+t
ﬁ 7 in any hesubgraph of G —
- maximun length of a path if k 3 2he2 :

in any hesubgraph of G

Thus Gcnk if and only if (G) = O9(k,n) = (lk/2], Ln/2) (k=21Kk/2])).
If #G) = (h,p) we define a ®-subgraph of G to be any h-subgrpah of G
qontaining either a matching of size p or a path of length p as the case

may be.

Suppose G = G(n,m,k) satisfies the conditions (a) and (b) of Lemma 3.2 and -
let X be as in (b) there. Let s = l'ckn'l , then for n large :
(3.4) there exists a d¢-subgraph H of HG-X, Az{ajpsas...,a.l,

A1’A200o00% svni t -> S, Swh th.t for 131.2’o.o'c. 'Ail .> t' . --.:__

a, % A; and if a ¢ Ai then e = {a.ai} R E(H) and ¢(Hee) ¥ o(H).
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b Proof
h.' Let H be any ¢-subgraph of H.

Suppose first that k = 2h+! and p < |n/2}. Llet A = {a: a is left

5 exposed by some maximum cardinality matching of l;} = {31,32,...,at}. Let
P Ai = {a: a and a, are left exposed by some maximum cardinality matching of
H} A. Then we deduce as in Lemma 2.3 that INg(a;)1 < 14, and nence that
b Ing(a )] < x|a [ and nence that Al 2 s.

If k > 2h+1 let P be a path of 1lepgth p in l‘; and let 8, be
one endpoint of P. Pdsa [ ] shows that there exists a set A1 auch that
; lNH(A1)| < 2|a,] and each beA, is an endpoint of a path of length p
Jjoining a, and b. We see by reasoning as above that |A1' > 8. We must

anow a1kNH(A1). Now (3.3) can be used to show that H is connected for n

n

large and so if a,eN;(A,) P is not a longeat path of H or H contains h+i
1%7H ™

disjoint hamiltonian cycles. We take A = {31}UA1 and repeat the argument

for a¢A1 with any path of length p with a as endpoint.

We now use the coloring argument (as in Lemma 2.4) to prove
Lemma 3.5

lim Pr(G(n,m,k)c;k) = 1

ne
Proof

Let g s " {G=G(n,m,k): (3.2) holds and G has exactly t red edges}. ANote
that each Ge 9 + has the same probability of being chosen. Next 1let St -

[6e§,:(3.2b) holds and #(G) # o(k,n)}.

In view of (3.1b) and Lemma 3.2, this lemma will follow if we prove
(3.5)

t ] €.
n-re
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Let w = [logn] and for Ge St let Eb(G), ET(G) denote the blue and red
edgea respectively. Consider now all the (:) ways of chooaing w olue
edges and recoloring them green.

For Ge St and X SEb(G), IX] = w, define
a(G,X) = 1 if (a) ¢(H) = ¢(G) where H = G-X;

(v) H satisfies (3.3);
(e) where.Hb-(Vn,Eb(G)-X), §(H°) = k-1 and H° has exactly
t vertices of degree k-1
= O otherwise
Let 2 be the set of blue-red edge-colored grapns obtainabvle by

deleting w blue edges from a graph G in J .
Por Hea lot X,={S gv(i)-n(x): there exista G=G(H,S)e 3, wita E°(G) =
E°(H) S and E7(G) = E"(S)} and let ay=l{SeX :a(c(H,s),s)=1}I.
We prove (3.5) by showing
(3.6a)  Ge gt implies:b a(6,X) > (1-0(1)) (:) (1 - E:é-)w
XCE (G)

IX] = w

(3.60)  ay < (1 = ad) IXgh (1 + o(1)).

for then

Z; Z a(G,X) > (1-0(1)) ( ) (1 - 15-*-2-)"|S |
t

xsn (c)
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e . 2 o
2 S ay & (1 =) Ixl (1+0(1)) “ ]
Heg Heg )
: =
:':\ - 2 m ::..::
& (1-ad) B 15,0 o) i
and (3.5) follows.
n Proof of (3.6a) -
N .
Given Ge § . ¥ith #(G) = (n,p) choose h disjoint hemiltonisn cycles
H ,Hy,..., plus a path or matching A of size p as necessary. Now there
-;‘ are at least (1-0(1)) (:) (1-(k+3)/1ogn)' ways of choosing a matching X
N W
that dnly meets small vertices of G and does not meet AV\J Hi' For eacih
i=1

such X, a(G,X) = 1, on using Lemma 3.3.

::;: Proof of (3.6b)

Let Hef. If H does not satisfy (3.4) or H® does mot nave t vertices of

degree k-1 them " O. So assume these conditions hold. It follows that

SeX; if and only if ssv(i) - E(H) and S does not meet any vertices of *
. degree k-1 in K, (We included the last condition in (3.4) in order to ;
give such a simple description of Xy). Let H be the ¢-subgraph guaranteed T
oy (3.3).

.: According to (3.3) we can only have a(G(H,X),X) = 1 if no edge of S 1
joins a,e¢A to A;. But there are at least (ainz-lm)/Z possibilities for

choosing such an edge (we subtract kn/2 to account for those that may

. occur in E(H)-E(ﬁ)). (3.60) follows along with the lemma.
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- Proof of Theorem 1.2 :

i Just use Lemma 3.1 and Lemma 3.4.
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